Mechanism and Control of Continuous-State Coupled Elastic Actuation

نویسندگان

  • Tzu-Hao Huang
  • Han-Pang Huang
  • Jiun-Yih Kuan
چکیده

Focusing on the physical interaction between people and machines within safety constraints in versatile situations, this paper proposes a new, efficient, coupled elastic actuation (CEA) to provide future human-machine systems with an intrinsically programmable stiffness capacity to shape the output force corresponding to the deviation between human motions and the set positions of the system. As a possible CEA system, a prototype of a two degrees of freedom (2DOF) continuous-state coupled elastic actuator (CCEA) is designed to provide a compromise between performance and safety. Using a pair of antagonistic four-bar linkages, the inherent stiffness of the system can be adjusted dynamically. In addition, the optimal control in a simple various stiffness model is used to illustrate how to find the optimal stiffness and force trajectories. Using the optimal control results, the shortest distance T.-H. Huang · H.-P. Huang (B) Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan e-mail: [email protected] T.-H. Huang e-mail: [email protected] J.-Y. Kuan Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA e-mail: [email protected] control is proposed to control the stiffness and force trajectory of the CCEA. Compared to stateof-the-art variable stiffness actuators, the CCEA system is unique in that it can achieve near-zero mechanical stiffness efficiently and the shortest distance control provides an easy way to control various stiffness mechanisms. Finally, a CCEA exoskeleton is built for elbow rehabilitation. Simulations and experiments are conducted to show the desired properties of the proposed CCEA system and the performance of the shortest distance control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tracking and Shape Control of a Micro-cantilever using Electrostatic Actuation

In this paper the problems of state estimation, tracking control and shape control in a micro-cantilever beam with nonlinear electrostatic actuation are investigated. The system’s partial differential equation of motion is converted into a set of ordinary differential equations by projection method. Observabillity of the system is proven and a state estimation system is designed using extended ...

متن کامل

Study Of Thermoelastic Damping in an Electrostatically Deflected Circular Micro-Plate Using Hyperbolic Heat Conduction Model

Thermoelastic damping (TED) in a circular micro-plate resonator subjected to an electrostatic pressure is studied. The coupled thermo-elastic equations of a capacitive circular micro plate are derived considering hyperbolic heat conduction model and solved by applying Galerkin discretization method. Applying complex-frequency approach to the coupled thermo-elastic equations, TED is obtained for...

متن کامل

Design and Modeling of a New Type of Tactile Sensor Based on the Deformation of an Elastic Membrane

This paper presents the design and modeling of a flexible tactile sensor, capable of detecting the 2D surface texture image, contact-force estimation and stiffness of the sensed object. The sensor is made of polymer materials. It consists of a cylindrical chamber for pneumatic actuation and a membrane with a mesa structure. The inner radius of the cylindrical chamber is 2cm and its outer radius...

متن کامل

Analysis of the Coupled Nonlinear Vibration of a Two-Mass System

This paper presents a fixed-end two-mass system (TMS) with end constraints that permits uncoupled solutions for different masses. The coupled nonlinear models for the present fixed-end TMS were solved using the continuous piecewise linearization method (CPLM) and detailed investigation on the effect of mass-ratio on the TMS response was conducted. The investigations showed that increased mass-r...

متن کامل

Modeling and Control of Adjustable Articulated Parallel Compliant Actuation Arrangements in Articulated Robots

Considerable advances in robotic actuation technology have been made in recent years. Particularly the use of compliance has increased, both as series elastic elements as well as in parallel to the main actuation drives. This work focuses on the model formulation and control of compliant actuation structures includingmultiple branches andmultiarticulation, and significantly contributes by propo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Intelligent and Robotic Systems

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2014